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simple olefins where steric effects appear to determine the 
mode of addition.10 

The reactions involving the sugar derivatives 2 and 3 are 
significantly more complex. Consideration of the results ob­
tained and examination of molecular models indicate that 
approach of the organopalladium salt for complexation10 oc­
curs primarily from the face of the cyclic enol ether ring op­
posite the aliylic acetate substituent.19 Decomposition of the 
resulting cis adduct with olefin formation depends on the 
conformation(s) that this adduct assumes. In Scheme I it is 
seen that addition of the organopalladium species to 3 produces 
an adduct which, in its most stable conformation (A), possesses 
an equatorial palladium function, i.e., a geometry improper 
for anti elimination of palladium acetate.10,20'21 The less fa­
vorable conformation B, obtained by chair-chair intercon-
version, possesses the proper geometry for this elimination and 
presumably gives rise to the minor reaction product 9. The 
palladium substituent in conformation A is, however, posi­
tioned with respect to the ring oxygen so as to permit anti 
elimination with alkoxide expulsion,9'22-25 ring cleavage, and 
formation of a Z-olefinic14 bond, i.e., the major product (10) 
of the reaction. For the reaction involving 2, the energy dif­
ference between the two conformational isomers corresponding 
to A and B is less; as a result less selectivity is observed in the 
adduct decomposition. 
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Direct Two-Step Conversion of Penicillins 
to 3-Acetoxymethylcephems 

Sir: 

Recently, we reported the transformation of penicillins to 
3'-substituted cephems through the intermediate 3-exo-
methylenecepham 2.1-2 Thus, the conversion of 2 to 3 and the 
subsequent displacement of halogen with the acetate ion af­
forded 4a.2 Such a transformation required initial activation 
of 2 with base to give the aliylic anion which was then trapped 
with halogen to give 3.2 Subsequent transformation converted 
4a to the important intermediate 7-aminocephalosporanic acid 
(7-ACA, 5).2 We have since theorized that, if one could 
transform the 3-exo-methylenecepham 2 to an intermediate 
which could be intercepted directly by acetate, then the need 
for the initial conversion to 3 would be obviated. 
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One possibility which we considered was that 3-exo-meth-
ylenecepham sulfoxide 1 might be a precursor to the desired 
activated intermediate 6 which could be trapped at the 3' 
carbon by acetate (1 —* 6 -»• 7). 

When we treated compound la with mixtures of acetic an­
hydride and acetic acid at reflux (126 0C), we obtained a 
mixture of A2,A3-3'-OAc cephems 7a and 4a, respectively (R 
= phenoxyacetyl): IR (CHCl3) 1785 cm"1; NMR (3:1 mix­
ture of A2 and A3) (CDCl3) 5 6.5 (br s, 0.75, A2-C2 H), 5.8 (dd, 
1, C7 H), 4.6 (s, 2, C7 side-chain methylene), 3.6 (br s, 0.5, A3 

C2), 2.1-2.2 (ss, 3, A2- and A3-3/-acetoxy). 
This reaction presumably proceeds through a Pummerer-

type intermediate 6 which is then trapped in a 1,4 manner by 
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acetate ion.3-5 The expected product is the A2-3'-OAc cephem 
7a. However, at the reaction temperature of 126 0C, isomer-
ization of the A2 double bond occurs and a 3:1 ratio of A2: A3 

isomers is obtained. That high temperature isomerizes the 
double bond is proven by heating to 70 0C, at which temper­
ature only the A2 product and starting material are ob­
tained.6 

We found this method to be generally applicable. Appar­
ently, variation of the penicillin side chain is permissible. Thus, 
thiopheneacetyl-exo-methylenecephem sulfoxide lb reacts 
under the above conditions to yield 7b and 4b (R = thio-
pheneacetyl) (IR (CHCl3) 1785 cm'1; NMR (CDCl3) 8 6.4 
(br s, 1, A2-C2 H), 5.6 (dd, 1, C7 H), 4.6 (br s, 2, C3- meth­
ylene), 3.8 (s, 2, C7 side-chain methylene), 3.8 (s, 2, C7 
methylene), 2.05 (s, 3, 3'-(acetoxy)), which ultimately can be 
converted to 4c, an important antibiotic. 

Another interesting variation of this method is to change the 
anhydride and acid. For example, a mixture of propionic an­
hydride and propionic acid at 120 0C converts la to the 3'-
propionate 7c: NMR (CDCl3) 5 6.45 (br s, 1, A2-C2 H), 5.7 
(dd, 1, C7 H), 2.3 (q, 2, methylene of propionoxy), 1.1 (t, 3, 
methyl of propionoxy). 

Optimal conditions for the conversion are to heat la in a 2:1 
mixture of acetic anhydride-acetic acid, at reflux (126 0C) for 
2 h. The mixture of A2,A3-3'-acetoxycephems 7a and 4a (R = 
phenoxyacetyl) is isolated in high yield. 

The mixture of isomers is then treated with w-chloroper-
benzoic acid in methylene chloride and 2-propanol at O 0C for 
45 min. This efficiently yields crystalline A3-3'-acetoxycephem 
sulfoxide 8. 

The yield for the two steps from la — 8 is 84%. 8 is subse­
quently treated with PCl3 and PCI5 and finally deblocked to 
yield 7-ACA(S).7 

This adaptation of a 1,4 Pummerer reaction, when combined 
with the ring expansion of penicillins to 1 as reported by Ku-
kolja, provides a facile and efficient conversion of penicillins 
to 3'-ester cephalosporins. 
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Replacement of the Nitro Group by Hydrogen1 

Sir: 

It was not until 1954 that the first useful synthesis of tertiary 
nitroparaffins was described. Since then a number of other 
reactions which also give excellent yields of pure aliphatic and 
alicyclic tertiary nitro compounds have been found.1^10 All of 
these reactions employ mild conditions and most of them are 
carbon-carbon bond-forming processes. It is of especial interest 
that they give rise to highly branched compounds—many of 
them all but unobtainable by other means. Still another im­
portant feature of these reactions is that they are capable of 
providing tertiary nitro compounds in which other functional 
groups are present, e.g., cyano, keto, and ester. 

With such a wide variety of unusual structures readily 
available it is apparent that any process which results in the 
replacement of a nitro group by other atoms or groups of atoms 
has considerable value. In this communication we describe a 
new reaction—the replacement of a nitro group by hydrogen. 
This occurs at room temperature when the nitro compound is 
treated with the sodium salt of methyl mercaptan. Equation 
1 is illustrative and Table I summarizes our results; it should 
be emphasized that yields refer to pure, isolated products. 

NO2CH3 

, -C -CN . , 
S l + CH,S Na C ^ 
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in 
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The mechanism of this transformation appears to be 

R3C-NO2 + CH3S- — R3C-NO2-- + CH3S- (2) 

R3C-NO2 R3C- + NO2" 

R3C- + H3C-S- — R3C-H + H2C-S" 

(3) 

(4) 

H2C-S- + R3C-NO2 -* H2C=S + R3C-NO2"- (5) 

The first two steps (eq 2 and 3) are fully consistent with what 
is known about electron-transfer reactions of aliphatic nitro 
compounds.10 The last two (eq 4 and 5), which provided the 
initiative for this work, were suggested by the studies of Bun-
nett, Boyle, and Wamser" on the free-radical chemistry of 
methoxide ion. Although mechanistic studies are not yet 
complete, it has already been established that several of the 
reactions of Table I are completely inhibited by 20 mol % of 
di-tert-buty\ nitroxide. This, and the fact that these reactions 
are greatly accelerated by exposure to two 20-W ordinary 
fluorescent lights, provides support for the proposed elec­
tron-transfer chain mechanism of eq 2-5.10 

A typical example follows. Under N2 the sodium salt of 
methyl mercaptan12 (10.5Og, 150mmol) was dissolved in 150 
mL of Me2SO13 and, then, 9.80 g (50 mmol) of I7 was added 
without opening the system. The resulting solution was stirred 
for 10 h, under N2, with exposure to two 20-W fluorescent 
lights and, then, was poured into water. The aqueous Me2SO 
solution was extracted with pentane, the pentane was washed 
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